스마트폰, 웨어러블 기기, IoT 센서 등 모바일 디바이스가 우리 일상에 깊숙이 자리 잡으면서, 이들 기기에서 AI를 구현하려는 수요가 급증하고 있습니다. 그러나 이러한 기기는 컴퓨팅 성능, 메모리, 배터리 등에서 제약이 큽니다. 특히 기존의 복잡한 신경망 모델은 모바일 디바이스의 자원으로 실행하기 어렵습니다. 이 문제를 해결하기 위해 등장한 것이 바로 경량화된 인공신경망입니다. 경량화 신경망은 모델 크기와 연산량을 줄이면서도 성능을 최대한 유지하는 방법입니다. 이 글에서는 경량화된 인공신경망을 구현하는 다양한 최적화 기법과 대표적인 아키텍처를 소개하고, 그 실제 응용 사례를 살펴보겠습니다. 경량화된 인공신경망의 필요성: 자원 제한을 극복하기 위한 필수 기술경량화된 신경망이 필요한 이유는 다음과 같습니다..