MobileNet 2

실시간 분석 기술: IoT와 엣지 디바이스를 위한 경량 신경망

스마트 홈, 웨어러블 기기, 자율주행차 등 오늘날 우리가 사용하는 다양한 기기들은 모두 IoT(사물인터넷)와 엣지 컴퓨팅 기술에 의존하고 있습니다. 이러한 기기들은 점점 더 많은 데이터를 실시간으로 처리하며, 우리 일상을 더 편리하게 만들어주고 있죠. 하지만 이들 기기는 종종 연산 능력, 메모리, 전력 등의 제약을 겪습니다. 복잡한 인공지능(AI) 모델을 실행하는 것은 엄청난 계산 자원을 요구하는데, 이러한 자원이 제한된 환경에서 AI 모델을 어떻게 실행할 수 있을까요? 답은 바로 경량 인공신경망에 있습니다. 경량 신경망은 기존의 AI 모델을 훨씬 가볍고 효율적으로 설계하여, IoT 및 엣지 디바이스에서도 실시간으로 데이터를 처리할 수 있게 해줍니다. 이를 통해 제한된 자원에서도 강력한 AI 기능을 활용..

모바일 디바이스의 경량화된 인공신경망: MobileNet, SqueezeNet 등 경량화된 아키텍처 설명

스마트폰, 웨어러블 기기, IoT 센서 등 모바일 디바이스가 우리 일상에 깊숙이 자리 잡으면서, 이들 기기에서 AI를 구현하려는 수요가 급증하고 있습니다. 그러나 이러한 기기는 컴퓨팅 성능, 메모리, 배터리 등에서 제약이 큽니다. 특히 기존의 복잡한 신경망 모델은 모바일 디바이스의 자원으로 실행하기 어렵습니다. 이 문제를 해결하기 위해 등장한 것이 바로 경량화된 인공신경망입니다. 경량화 신경망은 모델 크기와 연산량을 줄이면서도 성능을 최대한 유지하는 방법입니다. 이 글에서는 경량화된 인공신경망을 구현하는 다양한 최적화 기법과 대표적인 아키텍처를 소개하고, 그 실제 응용 사례를 살펴보겠습니다. 경량화된 인공신경망의 필요성: 자원 제한을 극복하기 위한 필수 기술경량화된 신경망이 필요한 이유는 다음과 같습니다..