앙상블학습 2

앙상블 학습: 배깅, 부스팅, 랜덤 포레스트로 성능 극대화하기

앙상블 학습(Ensemble Learning)은 여러 모델의 예측 결과를 결합하여 단일 모델보다 더 나은 성능을 얻는 방법입니다. 이는 마치 여러 전문가의 의견을 모아 더 정확한 결정을 내리는 것처럼, 여러 개의 모델을 결합해 예측 성능을 향상시키는 방법입니다. 앙상블 학습은 과적합을 줄이고, 더 견고하고 안정적인 예측을 제공할 수 있어 데이터 과학 및 머신러닝에서 필수적인 기법으로 자리잡고 있습니다. 이번 글에서는 앙상블 학습의 대표적인 기법인 배깅(Bagging), 부스팅(Boosting), 그리고 랜덤 포레스트(Random Forest)에 대해 다루고, 각각의 특성과 활용 사례를 쉽게 설명하겠습니다. 1. 배깅(Bagging): 안정성과 분산 감소배깅(Bootstrap Aggregating)은 동일..

머신러닝 과적합 해결: 정규화·앙상블·교차 검증을 통한 성능 향상 기법

과적합(Overfitting)은 머신러닝에서 자주 발생하는 문제로, 모델이 훈련 데이터에 너무 지나치게 맞춰져서 새로운 데이터에 대한 예측 성능이 떨어지는 현상입니다. 쉽게 말해, 모델이 데이터를 너무 깊이 학습하다 보니, 훈련 데이터에만 잘 맞고 새로운 데이터에서는 실패하는 경우를 말합니다. 예를 들어, 학교 시험에서 학생이 특정 기출문제만 완벽히 외우고, 그 문제만 나오면 잘 풀지만, 실제 시험에서 그 문제와 다소 차이가 나는 문제가 나오면 잘 못 푸는 것과 비슷합니다. 과적합의 해결은 머신러닝 모델의 성능을 최적화하는 데 매우 중요합니다. 모델이 데이터를 잘 학습하면서도, 새로운 데이터를 만났을 때 일반화된 패턴을 바탕으로 정확한 예측을 하도록 만드는 것이 목표입니다. 이를 해결하기 위한 방법에는 ..