고차원 데이터를 처리하는 것은 머신러닝과 데이터 분석에서 중요한 과제 중 하나입니다. 데이터가 많고 차원이 높아질수록, 모델이 과적합되거나 성능이 저하될 위험이 커집니다. 차원 축소 기법은 이러한 문제를 해결하면서도 데이터의 중요한 정보를 유지하도록 도와줍니다. 이 글에서는 차원 축소의 대표적인 기법인 PCA(주성분 분석)와 t-SNE(티-스니) 방법을 살펴보고, 고차원 데이터를 효율적으로 처리하고 시각화하는 방법을 알아보겠습니다. 차원 축소의 필요성: 고차원 데이터의 문제점1) 차원의 저주(Curse of Dimensionality)차원이 높아질수록(즉, 특징의 수가 많아질수록) 데이터 분석이 어려워지는 현상을 차원의 저주라고 합니다. 고차원 데이터에서는 데이터 포인트 간 거리가 멀어지고, 모델이 중요..