반응형 과적합해결1 머신러닝 과적합 해결: 정규화·앙상블·교차 검증을 통한 성능 향상 기법 과적합(Overfitting)은 머신러닝에서 자주 발생하는 문제로, 모델이 훈련 데이터에 너무 지나치게 맞춰져서 새로운 데이터에 대한 예측 성능이 떨어지는 현상입니다. 쉽게 말해, 모델이 데이터를 너무 깊이 학습하다 보니, 훈련 데이터에만 잘 맞고 새로운 데이터에서는 실패하는 경우를 말합니다. 예를 들어, 학교 시험에서 학생이 특정 기출문제만 완벽히 외우고, 그 문제만 나오면 잘 풀지만, 실제 시험에서 그 문제와 다소 차이가 나는 문제가 나오면 잘 못 푸는 것과 비슷합니다. 과적합의 해결은 머신러닝 모델의 성능을 최적화하는 데 매우 중요합니다. 모델이 데이터를 잘 학습하면서도, 새로운 데이터를 만났을 때 일반화된 패턴을 바탕으로 정확한 예측을 하도록 만드는 것이 목표입니다. 이를 해결하기 위한 방법에는 .. 2024. 10. 12. 이전 1 다음 반응형