K-최근접 이웃(K-Nearest Neighbors, K-NN) 알고리즘은 머신러닝에서 매우 간단하면서도 강력한 기법입니다. 이 알고리즘은 데이터를 분류하거나 회귀 분석을 할 때, '가까운 것이 비슷하다'는 직관적인 아이디어를 바탕으로 작동합니다. K-NN은 데이터를 학습하는 과정을 거치지 않고, 새로운 데이터를 기존 데이터와 비교하여 예측하는 게으른 학습(lazy learning) 방식입니다. 이 글에서는 K-NN의 기본 개념과 원리, 실생활에서의 활용 사례, 그리고 분류와 회귀에서의 적용 방식을 쉽게 풀어 설명하겠습니다. K-NN 알고리즘의 원리: 가까운 이웃 찾기K-NN은 새로운 데이터가 주어졌을 때, 이미 레이블이 지정된 데이터들 중에서 가장 가까운 K개의 이웃을 찾고, 그 이웃들의 레이블을 바탕..