지식증류 2

경량 신경망 설계 기법: 파라미터 공유, 프루닝, 양자화

스마트폰에서 인공지능 비서가 자연어를 이해하거나, 스마트워치가 실시간으로 건강 상태를 모니터링하는 것처럼, 우리는 점점 더 많은 모바일 기기와 IoT 디바이스에서 AI의 혜택을 누리고 있습니다. 하지만 이런 디바이스들은 매우 제한된 메모리와 계산 자원을 가지고 있기 때문에, 대규모 인공지능 모델을 실행하는 것은 큰 도전 과제입니다. 특히, 고성능을 유지하면서도 메모리 사용을 최소화하는 AI 모델이 필요합니다. 이를 해결하기 위한 다양한 경량 신경망 설계 기법들이 등장했으며, 이들 기법은 적은 메모리로도 높은 성능을 달성하는 데 중점을 두고 있습니다. 이 글에서는 파라미터 공유, 프루닝, 양자화와 같은 주요 기법을 통해 어떻게 메모리 효율을 극대화할 수 있는지 알아보겠습니다. 파라미터 공유: 자원을 절약하..

전이 학습과 양자화: 경량 신경망을 위한 훈련 시간 단축 기법

경량 신경망은 모바일 기기와 같은 자원이 제한된 환경에서도 AI 모델을 효율적으로 실행할 수 있도록 설계된 중요한 기술입니다. 그러나 이러한 경량화 모델을 처음부터 훈련하는 것은 여전히 많은 시간과 자원을 요구할 수 있습니다. 이를 해결하기 위한 여러 기법들이 제안되었는데, 대표적으로 전이 학습(Transfer Learning), 양자화(Quantization), 지식 증류(Knowledge Distillation) 등이 있습니다. 이 글에서는 이러한 기법들이 어떻게 경량 신경망의 훈련 시간을 단축시키고, 성능을 최적화하는지 자세히 살펴보겠습니다.  1. 전이 학습(Transfer Learning): 이미 학습된 모델의 활용전이 학습의 원리전이 학습은 사전에 대규모 데이터셋으로 훈련된 모델의 지식을 새로..