부스팅 2

XGBoost와 LightGBM: 성능을 높이는 부스팅 기법 소개

부스팅(Boosting)은 여러 약한 학습기(weak learner)를 결합해 더 강력한 학습기(strong learner)를 만드는 방법입니다. 여러 모델이 순차적으로 학습하면서 각 모델의 약점을 보완해 나가는 구조입니다. 이 방법은 예측 정확도를 극대화하는 데 매우 효과적이기 때문에, 데이터 과학과 머신러닝에서 중요한 역할을 하고 있습니다. 특히 최근 몇 년간 XGBoost와 LightGBM은 부스팅 기법을 크게 발전시켜, 높은 성능과 빠른 속도를 자랑하며 다양한 분야에서 널리 사용되고 있습니다. 이 글에서는 Gradient Boosting Machines(GBM), XGBoost, 그리고 LightGBM의 원리와 차이점을 쉽게 풀어 설명하고, 그들이 어떻게 실제 문제에 활용될 수 있는지 알아보겠습니..

앙상블 학습: 배깅, 부스팅, 랜덤 포레스트로 성능 극대화하기

앙상블 학습(Ensemble Learning)은 여러 모델의 예측 결과를 결합하여 단일 모델보다 더 나은 성능을 얻는 방법입니다. 이는 마치 여러 전문가의 의견을 모아 더 정확한 결정을 내리는 것처럼, 여러 개의 모델을 결합해 예측 성능을 향상시키는 방법입니다. 앙상블 학습은 과적합을 줄이고, 더 견고하고 안정적인 예측을 제공할 수 있어 데이터 과학 및 머신러닝에서 필수적인 기법으로 자리잡고 있습니다. 이번 글에서는 앙상블 학습의 대표적인 기법인 배깅(Bagging), 부스팅(Boosting), 그리고 랜덤 포레스트(Random Forest)에 대해 다루고, 각각의 특성과 활용 사례를 쉽게 설명하겠습니다. 1. 배깅(Bagging): 안정성과 분산 감소배깅(Bootstrap Aggregating)은 동일..