스마트폰에서 인공지능 비서가 자연어를 이해하거나, 스마트워치가 실시간으로 건강 상태를 모니터링하는 것처럼, 우리는 점점 더 많은 모바일 기기와 IoT 디바이스에서 AI의 혜택을 누리고 있습니다. 하지만 이런 디바이스들은 매우 제한된 메모리와 계산 자원을 가지고 있기 때문에, 대규모 인공지능 모델을 실행하는 것은 큰 도전 과제입니다. 특히, 고성능을 유지하면서도 메모리 사용을 최소화하는 AI 모델이 필요합니다. 이를 해결하기 위한 다양한 경량 신경망 설계 기법들이 등장했으며, 이들 기법은 적은 메모리로도 높은 성능을 달성하는 데 중점을 두고 있습니다. 이 글에서는 파라미터 공유, 프루닝, 양자화와 같은 주요 기법을 통해 어떻게 메모리 효율을 극대화할 수 있는지 알아보겠습니다. 파라미터 공유: 자원을 절약하..