데이터 전처리는 머신러닝과 데이터 분석에서 매우 중요한 단계입니다. 원시 데이터는 종종 부정확하거나 불완전한 상태로 제공되기 때문에, 이를 정제하고 모델 학습에 적합한 형태로 변환하는 과정이 필수적입니다. 데이터 전처리는 모델의 성능을 극대화하고 분석 결과의 신뢰성을 높이는 데 큰 역할을 하며, 그 과정에는 데이터 정제, 정규화, 결측치 처리, 그리고 특징 엔지니어링이 포함됩니다. 이 글에서는 데이터 전처리의 주요 단계들을 살펴보고, 데이터 품질을 향상시키기 위해 어떤 기술들이 사용되는지에 대해 자세히 설명하겠습니다. 1. 데이터 정제: 오류와 불일치 제거데이터 정제의 정의와 목적: 데이터 품질 향상데이터 정제는 불필요하거나 부정확한 데이터를 식별하고 수정하거나 제거하는 과정입니다. 이 과정은 데이터의 ..